Reaping the Benefits of IPv6 Segment Routing

Public PhD thesis defense

David Lebrun

Université catholique de Louvain

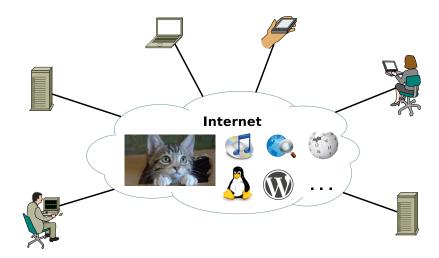
October 19, 2017

Table of Contents

Introduction

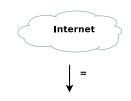
Segment Routing

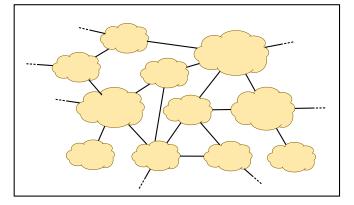
Implementing IPv6 Segment Routing in Linux


Exploring IPv6 Segment Routing

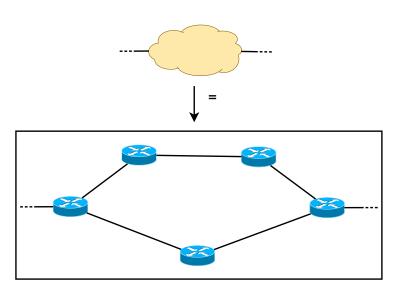
Rethinking IPv6 Enterprise Networks

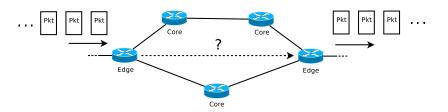
Conclusion


Introduction

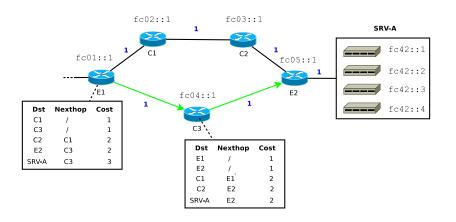

• Networks connect devices and transport information

Introduction

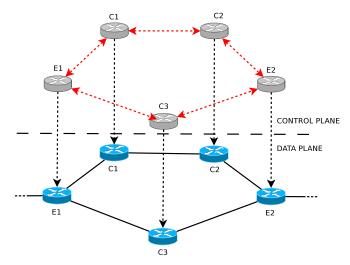

• Networks are interconnected


Introduction

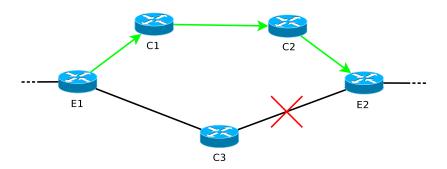
• Basic building blocks of networks are routers


Packet-based forwarding

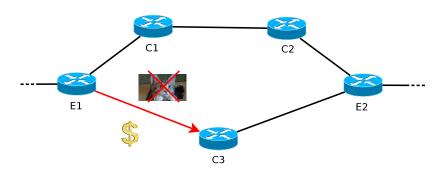
- Information is chunked into packets
- How are packets exchanged?
- The faster the better: shortest-path forwarding
- What is the shortest path?


Routing tables

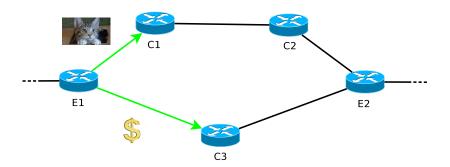
- Routing table: instructions on how to forward packets
- Each router computes its routing table


Control plane

- Routers exchange view of network
- Interior Gateway Protocols (IGP)
- Convergence to coherent global network state


Fault tolerance

- IGP recomputation triggered on link/node failure
- Network state converges, best paths change


Quality of Service

- Not all traffic is equal
- Prioritization of some classes of traffic (QoS)
- Congestion may occur ⇒ drop of low-prio traffic

Traffic engineering

- QoS only ⇒ inefficient resource utilization
- Traffic steering: make a detour

Traffic engineering

• Difficult to achieve TE solely with IGPs

• Traffic will follow shortest path

 $\bullet \ \ {\sf Existing \ solutions \ not \ scalable \ (MPLS/RSVP-TE)}$

Table of Contents

Introduction

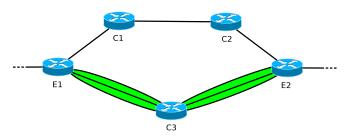
Segment Routing

Implementing IPv6 Segment Routing in Linux

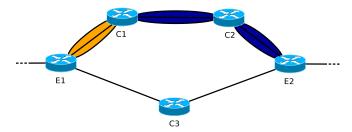
Exploring IPv6 Segment Routing

Rethinking IPv6 Enterprise Networks

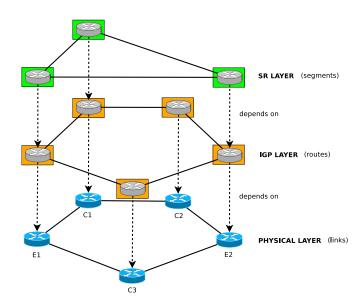
Conclusion

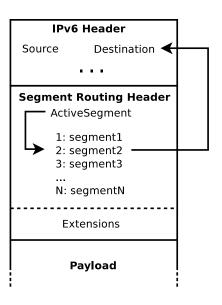

Segment Routing

- Source routing paradigm
- Path defined at source as list of segments
- List of segments embedded in each packet
- Segment ⇒ instruction (steering through node, link, ...)
- IPv6 Segment Routing $(SRv6)^1 \Rightarrow segment = IPv6$ address
- Runs on top of existing IGP: sequence of shortest paths


¹Stefano Previdi, Clarence Filsfils, David Lebrun, et al. *IPv6 Segment Routing Header (SRH)*. . Internet-Draft draft-ietf-6man-segment-routing-header-07. Work in Progress. Internet Engineering Task Force, July 2017. 34 pp.

Segment Routing


• From E1 to E2, segments: E2


• From E1 to E2, segments: C1, E2

Segment Routing layers

Segment Routing Header

SRv6 operations: encapsulation and insertion

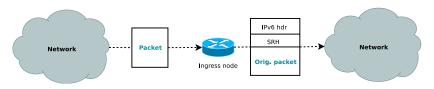


Figure: SRH encapsulation by ingress node.

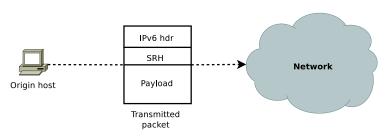


Figure: SRH insertion by source.

SRv6 operations: processing and decapsulation

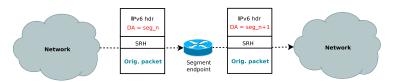


Figure: SRH processing by segment endpoint.

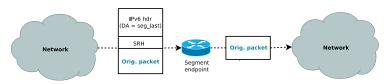


Figure: SRH decapsulation by egress node.

Table of Contents

Introduction

Segment Routing

Implementing IPv6 Segment Routing in Linux

Exploring IPv6 Segment Routing

Rethinking IPv6 Enterprise Networks

Conclusion

Benefits of a Linux implementation

• Mainline integration: widespread availability²

Feedback loop for a developing technology

Research opportunities for the scientific community

Routing engine

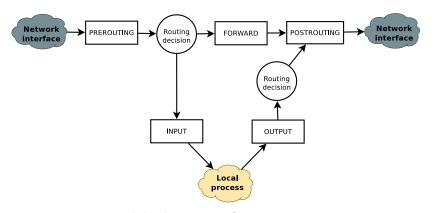


Figure: High-level overview of Linux routing process.

SRH insertion/encapsulation (forwarded packet)

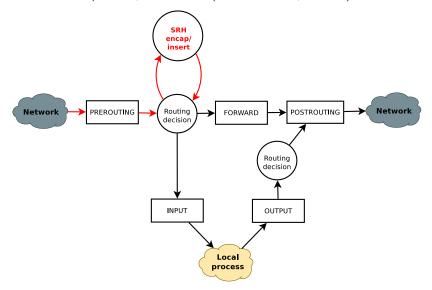


Figure: SRH insertion codepath for forwarded packets.

SRH insertion/encapsulation (local packet)

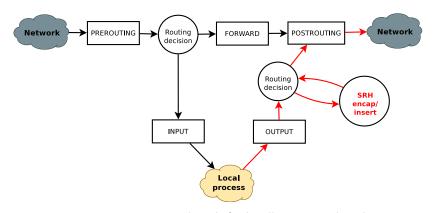


Figure: SRH insertion codepath for locally generated packets.

SRH processing/decapsulation

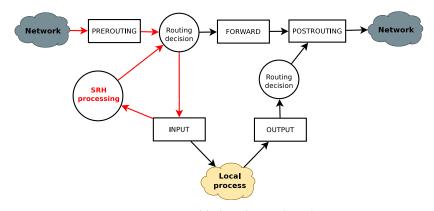


Figure: SR-enabled packet codepath.

Per-socket SRH insertion

• An application can (partially) program the network

```
Listing 1: Application code defining a per-socket SRH.

struct ipv6_sr_hdr *srh;
int fd, srh_len;

srh_len = build_srh(&srh);

fd = socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP);

setsockopt(fd, IPPROTO_IPV6, IPV6_RTHDR, srh, srh_len);
```

Performance evaluation: hardware setup

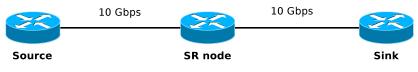


Figure: Physical testbed.

- Intel Xeon X3440 @ 2.53 GHz (4 cores / 8 threads)
- Intel 82599 10 Gbps Ethernet cards
- 16 GB RAM

Single-core performance

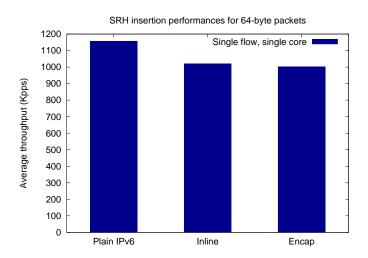


Figure: Performance with a single core.

4-core performance

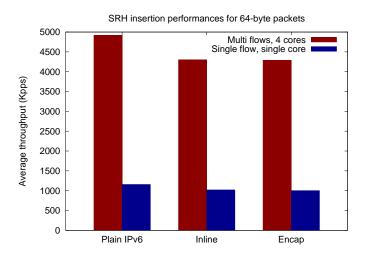


Figure: Performance comparison between single core and four cores.

SRv6 in Linux: conclusion

- Available in official Linux kernel (about 3,000 LoC)
 - Accepted and merged in November 2016
 - Linux 4.10 (Feburary 2017): first release
 - Linux 4.12 (July 2017): performance improvements
 - Linux 4.14 (November 2017): new features

Good and scalable performances

Anyone can contribute

Table of Contents

Introduction

Segment Routing

Implementing IPv6 Segment Routing in Linux

Exploring IPv6 Segment Routing

Rethinking IPv6 Enterprise Networks

Conclusion

Overview

• Traffic duplication for latency-critical application³

Fine-grained and scalable network monitoring⁴

³François Aubry, David Lebrun, Yves Deville, and Olivier Bonaventure. "Traffic duplication through segmentable disjoint paths". In: IFIP Networking Conference (IFIP Networking), 2015. IEEE. 2015, pp. 1–9.

⁴Francois Aubry, David Lebrun, Stefano Vissicchio, Minh Thanh Khong, Yves Deville, and Olivier Bonaventure. "SCMon: Leveraging segment routing to improve network monitoring". In: 35th Annual IEEE International Conference on Computer Communications, INFOCOM 2016. IEEE. 2016, pp. 1–9.

Network monitoring

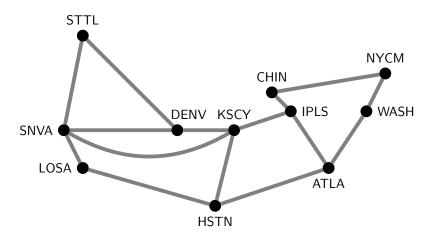


Figure: Abilene network.

Link bundles

Figure: Routing perspective.

Figure: Physical perspective.

Backup links

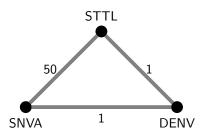


Figure: Topology with backup link.

Equal-Cost Multi-Path

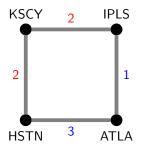


Figure: ECMP topology.

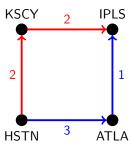


Figure: ECMP routing.

Monitoring mechanisms

• Protocol-based [BFD]: per-link heartbeat

• Probe-based [IPSLA]: dataplane probe

Protocol-based monitoring

- Per-link, per-router configuration
- Miss forwarding failures

Figure: Undetected forwarding failure.

Probe-based monitoring

• Shortest-path forwarding

• Multiple vantage points

• Cannot traverse backup links

• Miss ECMP and bundle failures

SCMon

• Create cycles with segments

• Send probes over those cycles

• Single vantage point

Cycles (1)

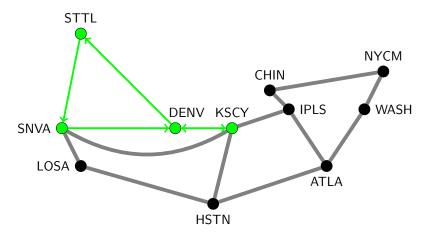


Figure: Abilene network.

Cycles (2)

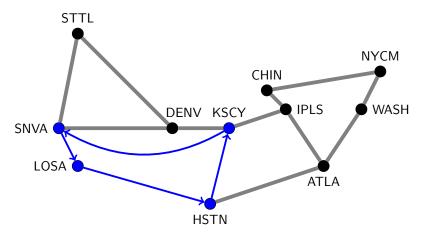


Figure: Abilene network.

Cycles (3)

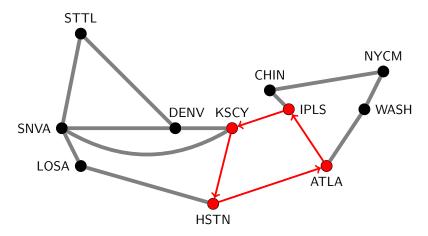


Figure: Abilene network.

Cycles (4)

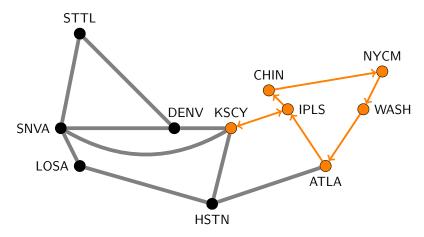


Figure: Abilene network.

SCMon evaluation

Topology	Nodes	Links	Cycles	Avg RTT	Max RTT
OVH Europe	57	216	87	18 ms	28 ms
RF AS1239	153	1010	195	83 ms	360 ms
RF AS1755	67	248	34	49 ms	130 ms
RF AS3257	103	484	76	48 ms	127 ms
RF AS3967	57	208	24	109 ms	206 ms

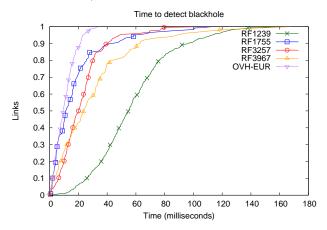


Figure: Link failure detection time for each topology.

Network monitoring: conclusion

• SCMon: Single-box monitoring

• Data plane probes over cycles

Prototype implementation

• Detect and locate link failure within milliseconds

Table of Contents

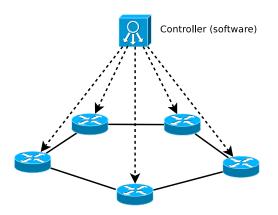
Introduction

Segment Routing

Implementing IPv6 Segment Routing in Linux

Exploring IPv6 Segment Routing

Rethinking IPv6 Enterprise Networks

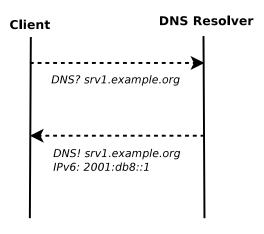

Conclusion

Enterprise networks

- Complex networks, various business policies
- ullet Operator needs fine-grained traffic engineering (o SR)
- ullet Fast reaction to failures (o underlying IGP)
- Best place for control: traffic sources (→ setsockopt())
- How do sources (applications) know the segments to use ?

Software-Defined Networking

- Central controller knows the network state and configures the devices
- Application ↔ controller communication ?



DNS protocol

- Domain Name System
- Resolve names to IP addresses

- Example: google.com → 2a00:1450:4009:815::200e
- Used virtually everywhere
- Idea: piggyback app flow control on DNS messages

Regular DNS request

Software Resolved Network

- ullet Use DNS as network signaling protocol o Software Resolved Network
- Resolver = Controller \rightarrow SDN Resolver

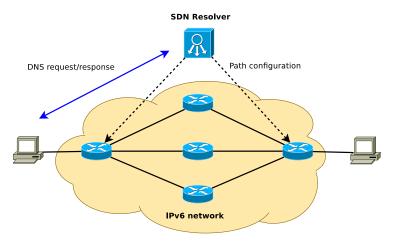
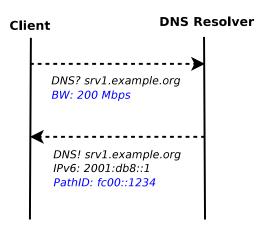
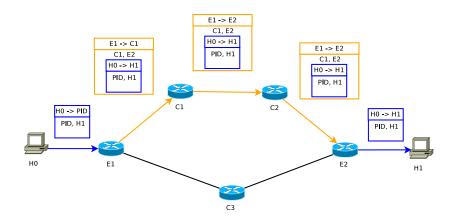



Figure: Software Resolved Network.

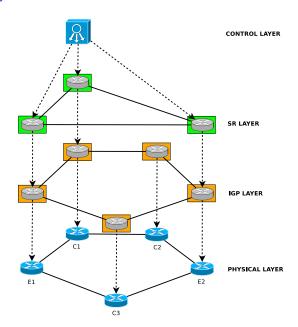
SRN-augmented DNS request

Conversations

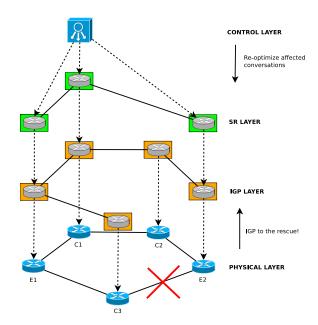
• Conversations: bidirectional flow between applications

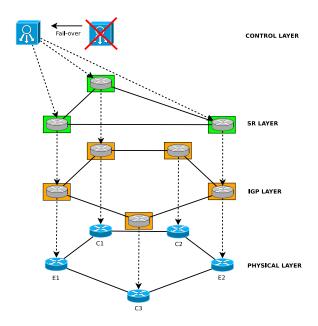

• Identified by a unique PathID

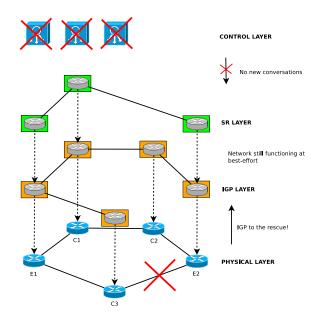
Mapping PathID ⇒ network path


Applications use only PathID

Implementing network paths


- ullet Edge maps PathID o list of segments
- ⇒ Additional state only in edge


SRN layers


Fault tolerance: link failure

Fault tolerance: controller failure

Fault tolerance: full controller outage

Controller implementation

• Complete prototype in about 10,000 lines of C code⁵

Microbenchmarks

• Virtual network experiment

⁵David Lebrun. *SDN Resolver controller code*. https://github.com/target0/thesis-data/sdnres-src.

Microbenchmark evaluation

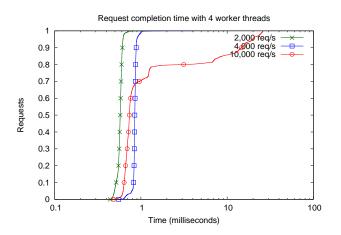
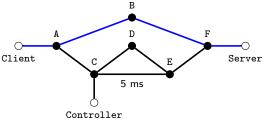
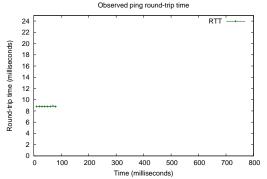
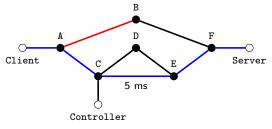
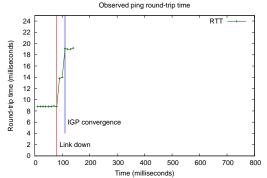




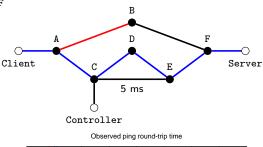
Figure: Request completion time with four worker threads for various loads.

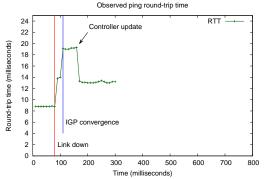
Virtual network experiment: initial setup


Segments: F

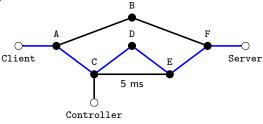


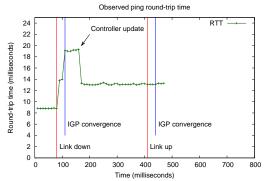
Virtual network experiment: link down and IGP convergence


Segments: F

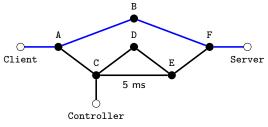


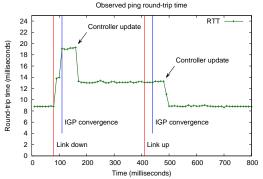
Virtual network experiment: controller update





Virtual network experiment: link up and IGP convergence


Segments: D, F



Virtual network experiment: controller update

Segments: F

Software Resolved Networks: conclusion

- SDN-like architecture for enterprise networks
- Traffic engineering through SRv6
- Applications interact with controller through DNS
- Complete prototype implementation
- Evaluation meets performance expectations

Table of Contents

Introduction

Segment Routing

Implementing IPv6 Segment Routing in Linux

Exploring IPv6 Segment Routing

Rethinking IPv6 Enterprise Networks

Conclusion

Conclusion

- Linux kernel implementation of SRv6
- Exploration of SRv6 applications
- Software Resolved Networks

- Fully reproducible: all code and data open-source and available
 - https://www.kernel.org (Linux kernel code)
 - https://github.com/target0/thesis-data