
1/69

Reaping the Benefits of IPv6 Segment Routing

Public PhD thesis defense

David Lebrun

Université catholique de Louvain

October 19, 2017

2/69

Table of Contents

Introduction

Segment Routing

Implementing IPv6 Segment Routing in Linux

Exploring IPv6 Segment Routing

Rethinking IPv6 Enterprise Networks

Conclusion

3/69

Introduction

• Networks connect devices and transport information

4/69

Introduction
• Networks are interconnected

5/69

Introduction

• Basic building blocks of networks are routers

6/69

Packet-based forwarding

• Information is chunked into packets
• How are packets exchanged ?
• The faster the better: shortest-path forwarding
• What is the shortest path ?

7/69

Routing tables

• Routing table: instructions on how to forward packets
• Each router computes its routing table

8/69

Control plane
• Routers exchange view of network
• Interior Gateway Protocols (IGP)
• Convergence to coherent global network state

9/69

Fault tolerance

• IGP recomputation triggered on link/node failure
• Network state converges, best paths change

10/69

Quality of Service

• Not all traffic is equal
• Prioritization of some classes of traffic (QoS)
• Congestion may occur ⇒ drop of low-prio traffic

11/69

Traffic engineering

• QoS only ⇒ inefficient resource utilization
• Traffic steering: make a detour

12/69

Traffic engineering

• Difficult to achieve TE solely with IGPs

• Traffic will follow shortest path

• Existing solutions not scalable (MPLS/RSVP-TE)

13/69

Table of Contents

Introduction

Segment Routing

Implementing IPv6 Segment Routing in Linux

Exploring IPv6 Segment Routing

Rethinking IPv6 Enterprise Networks

Conclusion

14/69

Segment Routing

• Source routing paradigm

• Path defined at source as list of segments

• List of segments embedded in each packet

• Segment ⇒ instruction (steering through node, link, ...)

• IPv6 Segment Routing (SRv6)1 ⇒ segment = IPv6 address

• Runs on top of existing IGP: sequence of shortest paths

1Stefano Previdi, Clarence Filsfils, David Lebrun, et al. IPv6 Segment Routing Header (SRH). .
Internet-Draft draft-ietf-6man-segment-routing-header-07. Work in Progress. Internet Engineering Task
Force, July 2017. 34 pp.

15/69

Segment Routing
• From E1 to E2, segments: E2

• From E1 to E2, segments: C1, E2

16/69

Segment Routing layers

17/69

Segment Routing Header

18/69

SRv6 operations: encapsulation and insertion

Figure: SRH encapsulation by ingress node.

Figure: SRH insertion by source.

19/69

SRv6 operations: processing and decapsulation

Figure: SRH processing by segment endpoint.

Figure: SRH decapsulation by egress node.

20/69

Table of Contents

Introduction

Segment Routing

Implementing IPv6 Segment Routing in Linux

Exploring IPv6 Segment Routing

Rethinking IPv6 Enterprise Networks

Conclusion

21/69

Benefits of a Linux implementation

• Mainline integration: widespread availability2

• Feedback loop for a developing technology

• Research opportunities for the scientific community

2David Lebrun and Olivier Bonaventure. “Implementing IPv6 Segment Routing in the Linux Kernel”.
In: Proceedings of the 2017 Applied Networking Research Workshop. ACM. 2017.

22/69

Routing engine

Figure: High-level overview of Linux routing process.

23/69

SRH insertion/encapsulation (forwarded packet)

Figure: SRH insertion codepath for forwarded packets.

24/69

SRH insertion/encapsulation (local packet)

Figure: SRH insertion codepath for locally generated packets.

25/69

SRH processing/decapsulation

Figure: SR-enabled packet codepath.

26/69

Per-socket SRH insertion

• An application can (partially) program the network

Listing 1: Application code defining a per-socket SRH.
s t ruc t ipv6_sr_hdr ∗ s r h ;
i n t fd , s rh_len ;

s rh_len = bu i l d_s rh (& s rh) ;

fd = sock e t (AF_INET6 , SOCK_STREAM, IPPROTO_TCP) ;

s e t s o c k op t (fd , IPPROTO_IPV6 , IPV6_RTHDR, srh , s rh_len) ;

27/69

Performance evaluation: hardware setup

Figure: Physical testbed.

• Intel Xeon X3440 @ 2.53 GHz (4 cores / 8 threads)
• Intel 82599 10 Gbps Ethernet cards
• 16 GB RAM

28/69

Single-core performance

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

Plain IPv6 Inline Encap

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

K
pp

s)
SRH insertion performances for 64-byte packets

Single flow, single core

Figure: Performance with a single core.

29/69

4-core performance

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

Plain IPv6 Inline Encap

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

K
pp

s)
SRH insertion performances for 64-byte packets

Multi flows, 4 cores
Single flow, single core

Figure: Performance comparison between single core and four cores.

30/69

SRv6 in Linux: conclusion

• Available in official Linux kernel (about 3,000 LoC)
• Accepted and merged in November 2016
• Linux 4.10 (Feburary 2017): first release
• Linux 4.12 (July 2017): performance improvements
• Linux 4.14 (November 2017): new features

• Good and scalable performances

• Anyone can contribute

31/69

Table of Contents

Introduction

Segment Routing

Implementing IPv6 Segment Routing in Linux

Exploring IPv6 Segment Routing

Rethinking IPv6 Enterprise Networks

Conclusion

32/69

Overview

• Traffic duplication for latency-critical application3

• Fine-grained and scalable network monitoring4

3François Aubry, David Lebrun, Yves Deville, and Olivier Bonaventure. “Traffic duplication through
segmentable disjoint paths”. In: IFIP Networking Conference (IFIP Networking), 2015. IEEE. 2015,
pp. 1–9.

4Francois Aubry, David Lebrun, Stefano Vissicchio, Minh Thanh Khong, Yves Deville, and
Olivier Bonaventure. “SCMon: Leveraging segment routing to improve network monitoring”. In: 35th
Annual IEEE International Conference on Computer Communications, INFOCOM 2016. IEEE. 2016,
pp. 1–9.

33/69

Network monitoring

STTL

SNVA

LOSA

DENV KSCY

HSTN

CHIN

IPLS

ATLA

NYCM

WASH

Figure: Abilene network.

34/69

Link bundles

SNVA DENV

Figure: Routing perspective.

SNVA DENV

Figure: Physical perspective.

35/69

Backup links

STTL

SNVA DENV

50 1

1

Figure: Topology with backup link.

36/69

Equal-Cost Multi-Path

KSCY

HSTN

IPLS

ATLA

2

2

3

1

Figure: ECMP topology.

KSCY

HSTN

IPLS

ATLA

2

2

3

1

Figure: ECMP routing.

37/69

Monitoring mechanisms

• Protocol-based [BFD]: per-link heartbeat

• Probe-based [IPSLA]: dataplane probe

38/69

Protocol-based monitoring

• Per-link, per-router configuration
• Miss forwarding failures

SNVA
DENV

KSCY
BFD BFD

Figure: Undetected forwarding failure.

39/69

Probe-based monitoring

• Shortest-path forwarding

• Multiple vantage points

• Cannot traverse backup links

• Miss ECMP and bundle failures

40/69

SCMon

• Create cycles with segments

• Send probes over those cycles

• Single vantage point

41/69

Cycles (1)

STTL

SNVA

LOSA

DENV KSCY

HSTN

CHIN

IPLS

ATLA

NYCM

WASH

Figure: Abilene network.

42/69

Cycles (2)

STTL

SNVA

LOSA

DENV KSCY

HSTN

CHIN

IPLS

ATLA

NYCM

WASH

Figure: Abilene network.

43/69

Cycles (3)

STTL

SNVA

LOSA

DENV KSCY

HSTN

CHIN

IPLS

ATLA

NYCM

WASH

Figure: Abilene network.

44/69

Cycles (4)

STTL

SNVA

LOSA

DENV KSCY

HSTN

CHIN

IPLS

ATLA

NYCM

WASH

Figure: Abilene network.

45/69

SCMon evaluation
Topology Nodes Links Cycles Avg RTT Max RTT

OVH Europe 57 216 87 18 ms 28 ms
RF AS1239 153 1010 195 83 ms 360 ms
RF AS1755 67 248 34 49 ms 130 ms
RF AS3257 103 484 76 48 ms 127 ms
RF AS3967 57 208 24 109 ms 206 ms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180

Li
nk

s

Time (milliseconds)

Time to detect blackhole

RF1239
RF1755
RF3257
RF3967

OVH-EUR

Figure: Link failure detection time for each topology.

46/69

Network monitoring: conclusion

• SCMon: Single-box monitoring

• Data plane probes over cycles

• Prototype implementation

• Detect and locate link failure within milliseconds

47/69

Table of Contents

Introduction

Segment Routing

Implementing IPv6 Segment Routing in Linux

Exploring IPv6 Segment Routing

Rethinking IPv6 Enterprise Networks

Conclusion

48/69

Enterprise networks

• Complex networks, various business policies

• Operator needs fine-grained traffic engineering (→ SR)

• Fast reaction to failures (→ underlying IGP)

• Best place for control: traffic sources (→ setsockopt())

• How do sources (applications) know the segments to use ?

49/69

Software-Defined Networking

• Central controller knows the network state and configures the
devices
• Application ↔ controller communication ?

50/69

DNS protocol

• Domain Name System

• Resolve names to IP addresses

• Example: google.com → 2a00:1450:4009:815::200e

• Used virtually everywhere

• Idea: piggyback app flow control on DNS messages

51/69

Regular DNS request

52/69

Software Resolved Network
• Use DNS as network signaling protocol → Software Resolved

Network
• Resolver = Controller → SDN Resolver

Figure: Software Resolved Network.

53/69

SRN-augmented DNS request

54/69

Conversations

• Conversations: bidirectional flow between applications

• Identified by a unique PathID

• Mapping PathID ⇒ network path

• Applications use only PathID

55/69

Implementing network paths

• Edge maps PathID → list of segments
• ⇒ Additional state only in edge

56/69

SRN layers

57/69

Fault tolerance: link failure

58/69

Fault tolerance: controller failure

59/69

Fault tolerance: full controller outage

60/69

Controller implementation

• Complete prototype in about 10,000 lines of C code5

• Microbenchmarks

• Virtual network experiment

5David Lebrun. SDN Resolver controller code.
https://github.com/target0/thesis-data/sdnres-src.

https://github.com/target0/thesis-data/sdnres-src

61/69

Microbenchmark evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100

R
eq

ue
st

s

Time (milliseconds)

Request completion time with 4 worker threads

2,000 req/s
4,000 req/s

10,000 req/s

Figure: Request completion time with four worker threads for various
loads.

62/69

Virtual network experiment: initial setup
Segments: F

Client

A

B

C

D

E

F

Server

Controller

5 ms

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 100 200 300 400 500 600 700 800

R
ou

nd
-t

rip
 ti

m
e

(m
ill

is
ec

on
ds

)

Time (milliseconds)

Observed ping round-trip time

RTT

63/69

Virtual network experiment: link down and IGP convergence
Segments: F

Client

A

B

C

D

E

F

Server

Controller

5 ms

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 100 200 300 400 500 600 700 800

Link down

IGP convergence

R
ou

nd
-t

rip
 ti

m
e

(m
ill

is
ec

on
ds

)

Time (milliseconds)

Observed ping round-trip time

RTT

64/69

Virtual network experiment: controller update
Segments: D, F

Client

A

B

C

D

E

F

Server

Controller

5 ms

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 100 200 300 400 500 600 700 800

Link down

IGP convergence

Controller update

R
ou

nd
-t

rip
 ti

m
e

(m
ill

is
ec

on
ds

)

Time (milliseconds)

Observed ping round-trip time

RTT

65/69

Virtual network experiment: link up and IGP convergence
Segments: D, F

Client

A

B

C

D

E

F

Server

Controller

5 ms

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 100 200 300 400 500 600 700 800

Link down

IGP convergence

Controller update

Link up

IGP convergence

R
ou

nd
-t

rip
 ti

m
e

(m
ill

is
ec

on
ds

)

Time (milliseconds)

Observed ping round-trip time

RTT

66/69

Virtual network experiment: controller update
Segments: F

Client

A

B

C

D

E

F

Server

Controller

5 ms

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 100 200 300 400 500 600 700 800

Link down

IGP convergence

Controller update

Link up

IGP convergence

Controller update

R
ou

nd
-t

rip
 ti

m
e

(m
ill

is
ec

on
ds

)

Time (milliseconds)

Observed ping round-trip time

RTT

67/69

Software Resolved Networks: conclusion

• SDN-like architecture for enterprise networks

• Traffic engineering through SRv6

• Applications interact with controller through DNS

• Complete prototype implementation

• Evaluation meets performance expectations

68/69

Table of Contents

Introduction

Segment Routing

Implementing IPv6 Segment Routing in Linux

Exploring IPv6 Segment Routing

Rethinking IPv6 Enterprise Networks

Conclusion

69/69

Conclusion

• Linux kernel implementation of SRv6

• Exploration of SRv6 applications

• Software Resolved Networks

• Fully reproducible: all code and data open-source and available
• https://www.kernel.org (Linux kernel code)
• https://github.com/target0/thesis-data

https://www.kernel.org
https://github.com/target0/thesis-data

	one
	Introduction
	Segment Routing
	Implementing IPv6 Segment Routing in Linux
	Exploring IPv6 Segment Routing
	Rethinking IPv6 Enterprise Networks
	Conclusion

