Robust fault-recovery in Software-Defined Networks

IBSDN: IGP as a Backup in SDN

Agenda

- 1. Software-Defined Networking
- 2. IBSDN
- 3. Evaluation
- 4. Discussion
- 5. Summary

Agenda

- 1. Software-Defined Networking
 - 2. IBSDN
 - 3. Evaluation
 - 4. Discussion
 - 5. Summary

Software-Defined Networking

- Decouples the control-plane from the data-plane
- Brings programmability in networks

OpenFlow concepts

Well-defined protocol and switch specifications

OpenFlow concepts (cont'd)

Programmability via flow tables setup by the controller

Challenges

- Of the data-plane
 - Scalability

Challenges

- Of the data-plane
 - Scalability
- Of the controller
 - Consistency
 - Correctness
 - Capacity

Challenges

- Of the data-plane
 - Scalability
- Of the controller
 - Consistency
 - Correctness
 - Capacity
- Robustness

Impact of failures

3 sources of failures

Impact of failures

- 3 sources of failures
- Handling failures:
 - Reactively
 - Proactively

Agenda

- 1. Software-Defined Networking
- 2. IBSDN
 - 3. Evaluation
 - 4. Discussion
 - 5. Summary

Motivation

- Existing recovery schemes have inherent limitations
- Deployment of SDN in service-provider networks will co-exist with legacy hardware

Architecture

Requirements

- 1. Primary rules
- 2. Next-hop control rules
- 3. IGP-path control rule
- 4. Identifying IGP-forwarded packets

Operational model

Normal operation

Operational model

Failure of the link R3-R4

Guarantees

Connectivity is preserved for any combination of failures

Guarantees

- Connectivity is preserved for any combination of failures
- Restoration of connectivity does not involve the controller

Guarantees

- Connectivity is preserved for any combination of failures
- Restoration of connectivity does not involve the controller
- Safety

Implementation overview

- Controller built against the Ryu framework
- Nodes are Linux hosts

Implementation overview (cont'd)

- IGP-forwarded packets are tagged in their TOS byte
- Uses OpenFlow fast failover groups

Agenda

- 1. Software-Defined Networking
- 2. IBSDN
- 3. Evaluation
 - 4. Discussion
 - 5. Summary

Benchmarks

Micro benchmark

Benchmarks

- Micro benchmark
- Macro benchmark

Comparison with purely reactive SDN technique

Comparison with purely proactive SDN technique

Agenda

- 1. Software-Defined Networking
- 2. IBSDN
- 3. Evaluation
- 4. Discussion
 - 5. Summary

Benefits

- Robust against arbitrary set of failures
- Offers the expressiveness of SDN under normal operation
- Simplifies network design

Limitations

- IGP convergence
- Cannot enforce arbitrary policies with IGP
- Path stretch

Future work

- Reduce path-stretch
 - Remove U-turns
- Enforce some policies during the recovery process
 - Strict policies (do or drop)

Agenda

- 1. Software-Defined Networking
- 2. IBSDN
- 3. Evaluation
- 4. Discussion
- 5. Summary

Summary

- Failure management is hard in pure SDN
- IBSDN adds an IGP beneath the SDN control-plane to deal with failures
- IBSDN ensures:
 - Maximal robustness
 - Scalability
 - Upper bound on restoration time