

Issues in modelling ISP networks

Olivier Bonaventure Pierre François Bruno Quoitin

Université catholique de Louvain Louvain-la-Neuve, Belgium

http://inl.info.ucl.ac.be

The ISP's view of a network

- High-level architecture
 - Star (single or dual)
 - Ring
 - Full mesh
 - Parallel planes
 - ...
- Building blocks
 - Points of Presence
 - Several routers per POP
 - P, PE and CE routers
 - Location is function of clients
 - Common patterns

Research networks

Are know by researchers, but differ from ISP networks

First difficulty: network topology

ISP's view

- Network inventory
- OSPF/ISIS link-state database
 - Routers
 - Links and LANs
 - link metrics

Researcher's view

- Observable part of the ISP network
- Mainly observed by using traceroute
- Issues with traceroute
 - routers can only be inferred
 - alias resolution
 - observed links depend on observation point
 - no information about link weights
 - load balancing was not well handled by traceroute

Limits of network observation

 How many links do we really observe when analysing traceroute data?

Importance of link metrics

Do link metrics really matter?

Case study

Protection against link failures with loop-free

alternates (LFAs)

- If link S->E fails, S can simply forward all packets towards E via W and they will reach E
 - LFA is one of the IP-based fast reroute techniques being developed within IETF

Importance of link metrics (2)

Coverage of loop-free alternates

Real link metrics

◆ GEANT: 66%

◆ ISPA:46%

◆ ISPB: 50%

◆ ISPC: 66%

◆ ISPD: 31%

◆ ISPE: 7%

Hop count metrics

• GEANT: 22%

◆ ISPA:12%

◆ ISPB: 40%

◆ ISPC: 46%

◆ ISPD: 21%

◆ ISPE: 46%

Second case study Traffic engineering GEANT

Input

- C-BGP model of GEANT network in TOTEM toolbox
- traffic matrices obtained from Netflow data on all border routers
 - router-router traffic matrices
 - prefix-prefix traffic matrices

Experiment

- For each traffic matrix
 - compute maximum intradomain link load
 - run IGP weight optimizer to minimize load
 - recompute with C-BGP model maximum intradomain link load

Traffic engineering GEANT (2)

What did we forgot?

- GEANT is a transit network
 - Most packets are produced and consumed outside

- 6 peering links with transit providers
- 2 peering links with Abilene
- Links (usually two for backup) to each NREN

Third case study: failure analysis

- How sensitive is the network to the removal of one intradomain link?
 - Example with GEANT

ISP-model 11 nture, 2007

Fourth case study: peering change

- How sensitive is the network to changing one peering link?
 - Example with GEANT

Conclusion

- Accurately modelling an ISP network is possible but this requires lots of data that are unfortunately often not available to researchers
 - Network topology (routers and links)
 - Intradomain routing
 - IGP metrics
 - areas
 - Interdomain routing
 - eBGP sessions and BGP filters
 - iBGP sessions and route reflectors
 - Traffic statistics

References

- B. Quoitin, BGP-based interdomain traffic engineering, PhD thesis, UCL, 2006
- P. François, Improving the convergence of IP routing protocols, PhD thesis, UCL, 2007
- S. Cerav-Erbas, O. Delcourt, B. Fortz, B. Quoitin, The Interaction of IGP weight optimization with BGP, ICISP'06, August 2006
- B. Quoitin, S. Tandel, A BGP solver for hot-potato routing sensitivity analysis, EUNICE 2006
- P. François, O. Bonaventure, An evaluation of IP-based Fast-reroute techniques, CoNEXT2005 student workshop, Oct. 2005
- B. Quoitin, C-BGP and Igen, available form http://inl.info.ucl.ac.be
- Totem toolbox : http://totem.info.ucl.ac.be